Wind Energy Research Consortium

Dakota Power, LLC

Dr. Richard (Dick) Gowen President and CEO

> Joel Lankutis Research Engineer

Dakota Power, LLC

A Research and Development Corporation

Next Generation Lightweight Electric Drive Systems

Wind Energy Research Consortium

- Dakota Power Tasks:
 - Report: Alternative technologies for wind turbines
 - Tutorial: Optimizing generation from residential wind turbines
- Focus on the potential for modified switched reluctance technology
 - SRDCM
 - Compare with induction and permanent magnet turbines

Overview of Dakota Power

- Light weight high power density electric drives
- Focus R&D- How do we know?
 - Modeling and simulation software
 - Test and evaluation infrastructure
- SRM advantages:
 - High performance over wide speed range
 - Lower cost than Permanent Magnet (PM) Motor
 - High temperature operations
- SRM an alternative to the strategic risk of further restriction of PM rare earth materials by China

Next Generation Machine Design SRDCM

Next Generation Machine Design Switch Reluctance DC Machine

SRDCM Rotor

SRDCM Stator

SRDCM Commutation

CommutStatEctobilestational commutStatEctobilestations and the static state of and the state of the state of

SRDCM Magnetic Fields Maxwell Software – Field Density

SRDCM Magnetic Fields Maxwell Software – Flux Vectors

Next Generation Machine Design SRDCM

Dakota Power R&D

- Research and development plan for the next generation light weight electric drive systems
 - Simulations magnetic density Maxwell Software
 - Adaptive electronic controls
 - Turbine generator
 - Test and analysis Dynamometer Test Facility
 - Materials and manufacturing techniques

Direct Drive – Army

- Lightweight Electric Drive System
- Replace internal combustion and diesel with electric drive
- Requires both motor and generator integrated in single machine
 - Motor powers vehicle
 - Generator converts energy created by vehicle for storage

Direct Drive – Army

Direct Drive – Army

- Lightweight Electric Direct Drive System
- Replace internal combustion and diesel with electric drive
- Requires both motor and generator integrated in single machine
 - Motor powers vehicle
 - Generator converts energy created by vehicle for storage
- Reduced weight
- Opportunity for a closed system free from abrasions of sand
- Provide quiet stealth operation

Today's Wind Turbine Generators

• Geared, High-Speed Drive Trains

Doubly Fed Asynchronous (

GE's 1.5 MW Wind Turbine

Vestas' 3.0 MW Wind Turbine

Today's Wind Turbine Generators

• Direct Drive, Low-Speed Drive Trains

Enercon's Direct Drive Industrial Scale Wind Turbine

Skystream 3.7 Residential Wind Turbine

Direct Drive – Wind Turbines

- Removing gears reduces size and weight
- Direct drive require less maintenance desired for off-shore installations
- Simplicity of design results in an overall increase in reliability
- Less noise for residential scale turbines when operated at lower speeds
- SRDCM potential alternative to popular PM

Comparison SRDCM and PM

- SRDCM
 - Low-speed high-torque low cost
 - High density rotor variable magnetic field
 - High temperature operation
- PM
 - Very high density rotor fixed magnetic field
 - Rare earth concerns in China

Thank you listening

May we answer your questions?

Dakota Power, LLC 3111 Lien Street Rapid City, SD 57702 <u>www.dplwed.com</u> rgowen@dplwed.com